
Week 11 - Friday



 What did we talk about last time?
 Recursion









To understand recursion, you must first understand recursion.



Two parts:
 Base case(s)
 Tells recursion when to stop
 For factorial, n = 1 or n = 0 are examples of base cases

 Recursive case(s)
 Allows recursion to progress
 "Leap of faith"
 For factorial, n > 1 is the recursive case



 Many natural things have recursive shapes:
 Trees
 Spiral shells
 Blood vessels
 Mountains
 Snowflakes

 Using recursion, we can draw some complex, organic-looking 
shapes with only a little code



 The following function draws a triangle, using the three points 
(which are given as lists that contain two elements each: an x
and a y value)

def drawTriangle(yertle, p1, p2, p3):
yertle.up()
yertle.goto(p1)
yertle.down()
yertle.goto(p2)
yertle.goto(p3)
yertle.goto(p1)



 The Sierpinski triangle draws a triangle with other smaller 
triangles inside of it

 Here's a representation:



 To make a Sierpinski triangle, we need another function that 
finds the midpoint between two points

 This function takes two points (both lists of two numbers) and 
makes a new point whose first value is the average of the first 
values from the original points and whose second value is the 
average of the second values from the original points

def mid(p1, p2):
return ((p1[0] + p2[0])/2, (p1[1] + p2[1])/2)



 We will use a recursive depth that keeps getting smaller until we 
decide to stop drawing triangles

 Base case (Depth is 0):
 Draw a triangle with the given corner points

 Recursive case (Depth > 0):
 Make a Sierpinski triangle at point 1, the midpoint of point 1 and point 2, 

and the midpoint of point 1 and point 3, at a depth one level lower
 Make a Sierpinski triangle at point 2, the midpoint of point 2 and point 3, 

and the midpoint of point 2 and point 1, at a depth one level lower
 Make a Sierpinski triangle at point 3, the midpoint of point 3 and point 1, 

and the midpoint of point 3 and point 2, at a depth one level lower



 Here is that function implemented in Python:

 A nice looking call that covers most of the turtle drawing 
space is:

def sierpinski(yertle, p1, p2, p3, depth):
if depth > 0:

sierpinski(yertle, p1, mid (p1, p2), mid(p1, p3), depth - 1)
sierpinski(yertle, p2, mid(p2, p3), mid(p2, p1), depth - 1)
sierpinski(yertle, p3, mid(p3, p1), mid(p3, p2), depth - 1)

else:
drawTriangle(yertle, p1, p2, p3)

sierpinski(yertle, [-225, -250], [225, -250], [0, 225], 5)









 Objects



 Reader 10.1 through 10.5
 Work on Assignment 8!
 It's hard.


	COMP 1800
	Last time
	Questions?
	Assignment 8
	Exam 2 Post Mortem
	Recursion
	Useful Recursion
	Complex shapes
	Drawing a triangle
	Sierpinski triangle
	Steps along the way
	Recursion for Sierpinski
	Sierpinski function
	Quiz
	Work Time
	Upcoming
	Next time…
	Reminders

